Article Text

Download PDFPDF

Exploring and accounting for publication bias in mental health: a brief overview of methods
Free
  1. Dimitris Mavridis1,2,
  2. Georgia Salanti1
  1. 1Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
  2. 2Department of Primary Education, University of Ioannina, Ioannina, Greece
  1. Correspondence to Dr Dimitris Mavridis, Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece; dimi.mavridis{at}googlemail.com

Abstract

Objective Publication bias undermines the integrity of published research. The aim of this paper is to present a synopsis of methods for exploring and accounting for publication bias.

Methods We discussed the main features of the following methods to assess publication bias: funnel plot analysis; trim-and-fill methods; regression techniques and selection models. We applied these methods to a well-known example of antidepressants trials that compared trials submitted to the Food and Drug Administration (FDA) for regulatory approval.

Results The funnel plot-related methods (visual inspection, trim-and-fill, regression models) revealed an association between effect size and SE. Contours of statistical significance showed that asymmetry in the funnel plot is probably due to publication bias. Selection model found a significant correlation between effect size and propensity for publication.

Conclusions Researchers should always consider the possible impact of publication bias. Funnel plot-related methods should be seen as a means of examining for small-study effects and not be directly equated with publication bias. Possible causes for funnel plot asymmetry should be explored. Contours of statistical significance may help disentangle whether asymmetry in a funnel plot is caused by publication bias or not. Selection models, although underused, could be useful resource when publication bias and heterogeneity are suspected because they address directly the problem of publication bias and not that of small-study effects.

View Full Text

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.